Скачать [Udemy] Парсинг и анализ данных на Python: от азов до автоматизации (2020)

#DudE

🔱 moder 🔱
Команда форума
Регистрация
29 Июн 2019
Сообщения
11,661
Баллы
113
[Udemy] Парсинг и анализ данных на Python: от азов до автоматизации (2020)
2021-05-23_17-36-08.png
Чему вы научитесь
  • Работа с данными с помощью pandas и numpy
  • Получение наборов данных из множества источников
  • Преобразование данных и предсказание последовательностей
  • Работа с HTTP, JSON, API, SOAP
  • Парсинг и скрепинг HTML сайтов
  • Визуализация данных: тренды и зависимости
  • Гео-данные м фоновые картограммы
  • Генерация PDF отчетов
  • HTML документы и шаблонизация
  • Отправка email и автоматизация работы
Требования
  • Базовые знания Python
  • Базовые знания HTML
Описание
Центр digital-профессий ITtensive предлагает персонализированные программы с индивидуальными наставниками для освоения актуальных профессий будущего: аналитик данных на Python и программист больших данных.
Курс состоит из 4 больших частей.
1. Анализ данных
Вы изучите работу с импортом, объединением, преобразованием, фильтрацией данных на pandas, а также научитесь предсказывать тренды.
Вы сможете самостоятельно загружать данные в формате CSV, TSV, Excel, извлекать из них значения, находить взаимосвязи между разными наборами данных, преобразовывать и усекать наборы данных. В заключении вы освоите математический аппарат линейной регрессии для поиска линейной связи между данными и эффективно примените его для предсказания значений в будущем.
2. Парсинг данных
Вы изучите получение данных в Python, используя библиотеку requests API и форматы JSON и XML (включая SOAP).
Научитесь работать с неструктурированными данными в HTML, собирать их и преобразовывать в фреймы данных.
Научитесь собирать данные целиком с сайта в несколько потоков: создадите мультипроцессного робота-паука.
В завершении установите SQLite и загрузите все собранные данные в базу, а также научитесь выбирать из базы данных непосредственно в фреймы данных.
3. Визуализация данных
Вы изучите анатомию matplotlib и типы визуализации различных данных: линии, области, столбцы, круговые диаграммы.
Научитесь визуализировать зависимости между данными и линейную регрессию с помощью seaborn: построите ящичковые и парные диаграммы, диаграммы распределения.
Изучите визуализацию временных (хронологических) данных: ряды, скользящие средние, отклонения и "японские свечи".
В завершении разберете работу с гео-данными и построение фоновых картограмм по нескольким наборам данных, используя geopandas.
4. Генерация отчетов и автоматизация
В этом курсе вы научитесь создавать и преобразовывать PDF документы, генерировать их из HTML кода, используя шаблонизатор, отправлять отчеты по e-mail и автоматизировать работу.
В курсе используются библиотеки reportlab, pypdf2, pdfkit, jinja2, smtplib, email, binascii, io, а также бинарный файл wkhtmltopdf. Решаем задачи по созданию PDF документа через холст, разбору PDF документа, объединению PDF документов, созданию HTML и PDF документов из HTML, шаблонизации HTML через jinja2, преобразованию бинарных данных в base64-кодировку. В заключении разберем отправку e-mail, включая HTML-письма и вложенные PDF отчеты.

Для кого этот курс:
  • Начинающие разработчики Python с интересом к анализу данных
  • Веб-программисты, изучающие Python для получения и разбора данных
  • Менеджеры, планирующие использовать Python для автоматизации работы
  • Научные работники, использующие Python для обработки данных
ПРОДАЖНИК
Скрытое содержимое. Вам нужно войти или зарегистрироваться.
СКАЧАТЬ
Скрытое содержимое. Вам нужно войти или зарегистрироваться.
 

rdbkzn

New member
Регистрация
24 Май 2021
Сообщения
1
Баллы
1
хороший набор.
  • (основы) получение данных
  • обработка
  • визуализация
парсинг WEB и обход капчи не увидел
 

#DudE

🔱 moder 🔱
Команда форума
Регистрация
29 Июн 2019
Сообщения
11,661
Баллы
113
Сверху